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Summa,  cv  

The-effects of polymer chain flexibility and elongational flow field on the isotropic 
-nematic phase transition are studied by applying a freely-jointed rods model to the 
Onsager theory. The biphasic region becomes wider and the difference of order 
parameters between the coexisting phases becomes larger as the flexibility increases. 
Also, the onset concentration of highly ordered nematic phase becomes lower, the 
biphasic region narrower and a difference of the order parameters between the 
coexisting phases smaller as the stretching rate increases. It is shown that there exists 
a critical point at a sufficiently high stretching rate, which means the existence of a 
stable monophase above the critical point. We emphasize that there exists not only a 
unstable biphasic state but also a stable biphasic state in a weakly stretching rate. 
Thus the order parameter has double values in this stable biphasic region. 

Introduction 
It has been known that the rod-like molecules form anisotropic or liquid 

crystalline phases (mesophase) in a solution when the concentration of these molecules 
becomes sufficiently high and simultaneously they orient toward a certain direction. 
The simplest type of the anisotropic phases is a "nematic" in which the molecules have 
some order in a certain direction n called a director. The mesophase is characterized 
by long-range orientational and short-range translational order. 

There have been several studies(l-A) to describe the nematic phase in terms of 
rigid-rod models. The nematic phase in the absence of external fields was first 
considered by Onsager.(1) Flory et al.(2--4) also described in detail the phase 
equilibria for rod-like and for semi-rigid polymers. 

On the other hand, the isotropic-nematic phase transition in a polymer solution in 
an elongational flow field was first analyzed theoretically by Marrucci et al.(5,6) 
Molecular alignment in the flow field was considered to be an additional contribution 
to the Gibbs iree energy and was superposed on the equilibrium expression of the Flory 
theory(2). Stable anisotropic regions was then obtained for the various stretching 
rates, solute concentrations and the axial ratios of the rods. Bahar and Erman(7) 
extended the treatment of Marrucci and Ciferri(5) by applying the exact lattice 
treatment(4) to the equilibrium free energy, which led to markedly different results 
when compared with the treatment of Marrucci and Ciferri. Thirumalai(8) showed 
the existence of the critical stretching rate above which only the ordered state was 
stable even in an infinitely dilute solution. He used the mean field variational method 
adopted by Onsager to predict the ordering phenomena qualitatively. Khokhlov and 
Semenov(9) considered the influence of external fields of the dipole and quadrupole 
types on the liquid crystalline ordering in solutions of rigid rods, freely-jointed rods 
and persistent semi-rigid macromolecules. Lee(10) described the phase equilibrium of 
two different nematic phases in a solution under an elongational flow field. See, Doi 
and Larson(ll) studied the stability of steady state solutions to Doi's kinetic equation 
for rigid rod-like polymers in an arbitrary flow field. 
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Our study develops a model for the solutions of freely-jointed rigid rodlike 
molecules subjected to an elongational flow field and describe the phase behaviors by 
using an accurate iterative method(12). 

Theoretical Considerlttion 
(a~ Modified Onsaeer Theory for Freelv-iointed Rods Model 
�9 " Consider a solution of M semi-rigicf macromolecules in dialytic equilibrium with 
the solvent at a temperature T under an uniaxial elongational flow field. One 
macromolecute is composed of a sequence connection of independently rotating rigid 
rods of length 1 and diameter d : axial ratio x = 1/d >>1. The number of rods in a 
macromolecule is N'. The number of rods in a volume V is N=MN', their 
concentration c=N/V (Figure 1). 

The free energy of the solution of freely-jointed rods in the second viriai 
approximation differs from the free energy of the corresponding solution of 
disconnected rods. That is, in the solution of disconnected rods each rod has the 
freedom of an independent translational motion while in the case under consideration, 
only the chain as a whole (but not each rod) can move independently. Hence the 
contribution of the translational entropy to the free energy is equal to TMln(M/V). 
For long chains this is much less than the corresponding contribution in the case of 
solution of disconnected rods TNln(N/V). 

Following Onsager theory(i) the interaction of rods is assumed to be due to the 
pure steric repulsion (no attraction). Then we may write the Helmholtz free energy as 
follows: 

F _ #o(W) 1 c 1 
1 + I n -  + a(f) +bcp ( f )+ -  GxSa(f) (1) 

NkT kT N' N' 2 
Here #o(T) is the chemical potential of one rod in the solvent at temperature T, 

b = (rd12/4). a, p and a are abbreviations for three functionals of the orientational 
distribution function f(u) for the rods as follows: 

a(f) = / ln[4~(u)]f(u) du (2) 

describing the orientational entropy per rod, 

P(f) = --~--I/K(u,u')f(u)f(u') dudu' (3) 

describing the excluded volume effects of two rods, and 

Figure 1. 

a b 

Schematic representation of rod-like molecules: 
m  ,omo, ocu,o 

semi-rigid freely-jointed macromolecule. 
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r 
a(f) = | sin20 f(u) du (4) 

describing the orientational part of the flow field. The unit vector u specifies the 
, . I  

direction of a given rod. Also 0 specifies the angle between the rod axis and the flow 
axis. The kernel K(u,u') is proportional to the excluded volume related with two rods 
having orientations u and u'. In the case of no attraction the kernel can easily be 
calculated 
K(u,u') = I sin 7(u,u')l (5) 

The third term in Eq.(1) is the free energy of the relative motion of the centres of 
gravity of the macromolecules. The last term is associated with the velocity potential 
in a steady state elongationai flow field(13). G is the dimensionless stretching rate(5): 

G = rd'/(SkT/ ) (6) 
In Eq.(6), P is the stretching rate and kT/~ is the diffusion coefficient Of a 
macromolecular segment. 

By minimizing Eq.(1) with respect to f(u), the nonlinear integral equation is 
obtained. 

ln[4xf(u)] = C - Sqr JK(u,u')f(u')du'-�89 Gx3sin20 (7) 

where q --- bc is a dimensionless concentration and C is a constant determined by the 
normalization 

J f(u) du = 1 (8) 
We can see that the free energy of Eq.(1) and Eq.(7) coincide with those of 

Onsager theory as N' and G approach to one and zero, respectively. 
(b) Orientational Distribution Function 

Without resort to any functional expansions, Eq.(7) can be solved numerically by 
the iterative method. The form of Eq.(7) suggests that a solution can be obtained by 
using the following formula 

exp[--~r [K(u,u')fm(u')du'- �89 

fro+ 1(0) = j.exp[__ ,j K(u,u,)fm(u,)du,_ �89 (9) 

where m is the iteration number. Lee(10) showed that Eq.(9) was convergent. 
The square matrix { K } is introduced to solve Eq.(9) and represents the kernel 

K(u,u'). Each component has the following form: 

K(0i,Oj') = y K(cos-l[sin0isin~'cos~'+ cos0icos~'])dqo' (1O) 

where qo' is azimuthal angle between n i and nj', i and j specify the i - tb  and j - th  

element out of n total elements having polar angle 0 and 0', respectively. 
These integrals in Eqs.(9) and (10) are solved by trapezoidal quadrature formula. Lee 
and Meyer(14) showed that this iterative method gave results independent of n for 
large n. We have performed numerical iterations in case of n = 180 in the system of 
monodisperse rods. 

In the iteration, each step moves in a decreasing direction of the discretized free 
energy. After sufficiently converging iterations, the solution f(0) is independent of the 
initial form of f(0) and represents a well-defined orientational distribution function. 
However, the solutions depend on the initial form of frO) in the biphasic region. 
Convergence is assumed when the frO) difference between two successive iterations 
becomes less than at least 10 -~ 

In the case of no flow we find, in general agreement with the other works(ll,12), 
that (i)all initial choices for the orientational distribution function lead to the 
isotropic distribution function for q < ql = 3.49; (ii)all initial choices for the 

orientational distribution function lead to the anisotropic distribution function for 
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q > q = 3.96; (iii) for ql ~ q _<q , a initial choice of f~ = const, leads to the isotropic 

distribution function, but the choice of f~ = a l -a2 0 -a302 , where a's are arbitrary 

constants, leads to the anisotropic distribution function; (iv) for q = q2 = 3.53, the free 

energy of the isotropic phase equals to that of the nematic phase. 
Doi(15) showed the phase transition as a function of a parameter U by using the 

generalized diffusion equation. Here U denotes a phenomenological parameter 

(=u2cdl~) characterizing the intensity of the interaction potential, where u 2 is a certain 

numerical factor. The values of U1, U 2 and U correspond to those of ql '  q2 and q 

for our's results, respectively. The values of U is in quantitative agreement with the 
values of q in the case of u2= 0.6. Finally we note that the isotropic and nematic 

phases can stably coexist between ql and q , otherwise one of them becomes unstable. 

In the nematic phase, a measure of orientation is provided by the order parameter 
S defined as 

S = [ f(O)sin 0 [--~--cos20- + ]  dO (11) 

The order parameter varies from zero for a randomly oriented system to unity for 
* J  

complete orientation. 
(C) IsotroDic--Nematic Phase Transition 

In order to find the transition concentrations of the isotropic (qi) and nematic (qa) 

phase, we equate the osmotic pressure and chemical potential of each phase : 
OF = k W c ( ~ ,  + qp) (12) P = -(~V)T,N 

OF  o+kT( @ 1 c +�89 (13) = +~/Tln--~-1 + a  +2qp , - ( ~ ) T , V  = 
It is convenient to introduce the dimensionless parameters for osmotic pressure and 
chemical potential. Hereafter, P denotes dimensionless osmotic pressure bP/kT and # 
denotes dimensionless chemical potential (#-#o)/kT +1 +(ln b)/N' -1 /N ' .  Then the 

coexistence conditions can be expressed as 

q i ( -~ ,  + qiPi ) = qa(--~, , + qaPa ) (14) 

1 qi 1 3 1 qa 1 3 (15) 
- - ~ l n ~ + a i + 2 q i P i + - - - 2 - - G x  ai=-~ln----~[r-+ a a + 2qaPa +--2--Gx a a 
The simultaneous nonlinear equations (14) and (15) are solved by the 
Newton-Raphson iterative method. 
(d) Effects of E10ngational Flow Field 
�9 " The uniform distribution function f(u)=l /(4z)  does not satisfy Eq.(7) any more for 
all values of the dimensionless concentration q unless the flow field vanishes. Even in 
the limit of zero concentration we expect that there exists the orientational order 
induced by the flow field. In the flow field, for that reason, words such as "isotropic" 
and "nematic" are replaced with words such as "weakly ordered nematic" and "highly 
ordered nematic", respectively. 

The transition concentration versus the flow parameter Gx 3 is plotted for four 
different numbers N' in Figure 2. There are three phase regions; weakly ordered 
nematic, biphasic and highly ordered nematic phases. 

The freely-jointed rods model includes, of course, the rigid rod-like model as a 
special case (N'=I)  and describes, at least qualitatively, the semi-rigid case (N'= ~). 
As the number of rods in a macromolecule N' becomes larger, in other words, a 
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flexibility of the macromolecule increases, qi becomes smaller and qa becomes larger. 

Thus the biphasic region becomes wider. These results agree qualitatively with those 
of Flory theory(16). However, the calculated transition concentration and biphasic 
region, based on the Onsager's approximation, are smaller and wider than those of the 
Flory theory, respectively. As the flow parameter increases, the biphasic region 
becomes narrower. Thus we can see a critical point ( qc = qi = qa ) at a certain value 

of flow parameter above which a stable monophase exists. When N' becomes larger, 
the critical flow parameter becomes larger. However, for N' > 1000 the phase diagram 
almost does not change. 

A general features of these phase diagrams are in qualitative agreement with the 
other works(5-10). In order to prove the stability of biphasic region as stated 
previously, the Eq.(9) is solved for two different initial forms of f(0). In the case of 

small Gx 3 there exists a stable coexisting state of weakly ordered nematic and highly 
ordered nematic phases as well as a unstable coexisting state in the biphasic region.  
Thus, S has double values for one q value in this stable coexisting state as shown in 
Figure 5(a). These results are in disagreement with those of Lee(10), which show 
always unstable biphasic regions. 

Figure 3 shows the transition order parameters as a function of the flow parameter 

Gx ~ for four different numbers N'. As Gx 3 increases, the biphasic region becomes 
smaller. Thus the order parameter reaches a critical point at which S i and S a meets 

together. For a given Gx 3, a difference of the order parameter in the biphasic region 
becomes larger as N' increases. 

Figure 4 shows the order parameters S as a function of the flow parameter Gx 3 for 
four different concentrations q. The lowest curve corresponds to a dilute solution with 
q = 2.5, which shows a very slowly increasing with increasing flow parameter. For the 
curve for q = 3 . 2 ,  the solution shows a unstable biphasic in the range 

0.19 < Gx 3 < 0.52. Thus S has no double values and increases nonlinearly with Gx 3, 
reaching a relatively high value. We note that in the quiescent state the solution 
should be isotropic at this concentration. When q = 3.5, the solution shows a stable 

biphasic region for 0 < Gx 3 < 0.11. The relation of S to Gx 3 in this region is shown 
by the dashed line in Figure 4. Probably overall order parameter may be seen to 

increase nonlinearly with Gx 3 in this region. For Gx 3 > 0.11 the solution shows a 

totally nematic single phase. The change in S with increasing Gx ~ is not very high in 
this region. For q = 4.5. the solution is already highly nematic in the quiescent state, 
which means a very slight change of order parameter with flow parameter. 

Figure 5 shows the order parameters S as a function of the dimensionless 

concentration q for four different flow parameters Gx 3. Strong dependence of S on q is 

observed for all values of Gx 3. When Gx 3 = 0.1, the solution shows a stable biphasic 
region for 3.43 < q < 3.50. Thus S has double values. 

Conclusions 
This paper generalizes the Onsager theory by introducing an external flow field 

and a flexibility of macromolecules to the solution system of rod-like molecules. The 
phase transition is affected largely by the axial ratio x of the rod but very little by the 
number of rods in a molecule. Application of the freely-jointed rods model to real 
chain molecules should be undertaken with caution.(16) For example block 
copolymers in which one of the blocks is a rigid chain represent a further class of 
substances having the potentiality for formation of a nematic phase. It is obvious that 
the nematic ordering induced by the flow field, at a critical value of stretching rate, is 
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always accompanied by a phase transition to a highly ordered nematic phase. And it 
should be emphasized that there exists not only a unstable coexisting phases but also a 
stable coexisting phases in a weakly stretching rate. 

Finally the effect of an elongational flow field on the rod-like systems is more 
pronounced when the system is close to or in the biphasic state. 
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